VDM1 — VDM1 TASK 1: AUTOMATING DATA INTEGRATION Paul Jaramillo

This report’s purpose is to address the question of “what film category is rented from most at our

stores”.

1.

3.

In the report, there is an analysis of the number of times each specific item of inventory was
rented so that the data could be joined to the specific films the inventory refers to, and then
joined with the film categories those films are in. The amount each item of inventory was rented
is analyzed by counting the amount each specific item of inventory appeared in the rental table.
Each inventory id number is linked to the film id number it belonged to so the films that were
rented can be identified and the amount each film was rented could be totaled. The film id
number is linked to the category id number so the amount each film was rented could be
accumulated and counted alongside other films in their respective categories, making it possible
to identify the amount rented in each film category.

The data tables used for the report include the category table, the rental table, the inventory
table, and the film_category table.

e The category table provides the names of every film category.

o The rental table allows for an analysis of every time a specific item of inventory was
rented.

e The inventory table allows the inventory id numbers to be joined with the film id
number so the films are identified and each time a specific film was rented could be
totaled.

o The film_category table allows for each film id number to be joined with the
film_category id number and allows for a count of the total amount rented in that
specific film category.

In the detailed report, the fields being used include the category_id, category _name,
amount_film, amount_rented.

e (Category_id is the specific id number assigned to each film category.

e Category_name is the name of each film category.

e Amount_film is the number of specific films that are in each film category.

e Amount_rented is the amount of inventory rented in each film category.

In the summary report, the fields being used are narrowed to the category_id, category_name,

and amount_rented fields.

The category_name field in the detailed section will require a custom transformation to better
represent each category. The category name field contains the film category names but doesn’t
specify that each category refers to films. In order to better represent each film category, the
category_name field will be transformed to include the word ‘Films’ at the end of each name.

VDM1 — VDM1 TASK 1: AUTOMATING DATA INTEGRATION Paul Jaramillo

5. The different business uses of this report that are represented by the detailed and summary
sections include decision making on product placement, product advertising, and product
supply. Knowing the film category that is rented from the most will give insight into where these
products should be placed, for example, a film category that is popular can be placed in the back
of the store which will require customers to be introduced to other films before reaching the
film they want. Conversely, the product can be placed in the front of the store to make these
films more accessible to the customers. The report also aids in the decision of which films
should be advertised on posters in front of each store. The report also gives insight into what
films should be purchased for our stores to optimize sales.

6. The report should be refreshed monthly in order to stay relevant to stakeholders. This will allow
each store to order new films that are in a popular film category for that coming month. This will
also allow stores to accurately target customers with advertisements on new films that are out
in that specific film category.

Detailed Table

r:ategnry_id 7 categnry_namg . ?uma:runt_ﬁlm .arnuunt_rented 7

[PK] integer character varying (25} integer integer
1 Action Films 61 1112
2 Animation Films 64 1166
3 Children Films 28 945
4 Classics Films 4 G939
3 Comedy Films 26 a4
6 Documentary Films 63 1050
7 Drama Films 61 1060
8 Family Films 67 1096
9 Foreign Films 67 1033
10 Games Films 28 069
11 Horror Films 23 846
12 Music Films a1 830
13 MNew Films 60 940
14 Sci-Fi Films 59 1101
15 Sports Films 73 1179

16 Travel Films 23 a37

VDM1 — VDM1 TASK 1: AUTOMATING DATA INTEGRATION

Summary Table

category_id 7 category_name amount_rentad
[PE] integer character varying (25) integer

15 Sports Films

2 Animation Films

1 Action Films
Sci-Fi Films
Family Films

4
8

7 Drama Films
6 Documentary Films
g

Foreign Films
10 Games Films

3 Children Films
3 Comedy Films
13 MNew Films

4 Classics Films
11 Horror Films
16 Travel Films

12 Music Films

845
837
830

Paul Jaramillo

Summary: The film category that was rented from the most was the sports films category with
1179 films rented. With this data in mind, we are able to make better decisions on the product
placement, product advertisement, and product supply in our stores. Since more sports films are
rented than any other category, we have the decision to either move the film category to the
front of the store to make these films more accessible or to the back of the store in hopes of
increased sales of other film categories as customers walk through our stores. We should also
advertise more sports films on posters in front of our stores to draw our customers in. Finally,
since we have a lot of sports fans, we should order more sports films to increase sales.

VDM1 — VDM1 TASK 1: AUTOMATING DATA INTEGRATION Paul Jaramillo

-- Section B starts here

CREATE TABLE detailed_report |

category_id INT PRIMARY KEY,

category_name varchar (25),

amount_film INT,

amount_rented INT,

FOREIGN KEY (category_id) REFERENCES category (category_id));

CREATE TAELE summary_table(
category_id INT PRIMARY KEY,
category_name VARCHAR (25},

CREATE TABLE summary_table(

category_id INT PRIMARY KEY,

category_name VARCHAR (25),

amount_rented INT,

FOREIGN KEY (category_id) REFERENCES category (category_id));

ST L I e Fhdl LI I =

INSERT INTO detailed_report (category_id, category_name, amount_film, amoun
SELECT f.category_id as category_id, c.name AS category_name, COUNT({DISTIN

FROM film_category AS f

INNER JOIN category as ¢

ON c.category_id = f.category_id

INNER JOIN dnventory AS 1

ON i.film_id = f.film_id

INMER JOIN rental AS r

ON r.inventory_id = i.inventory_id

GROUP BY f.category_id,c.name;

VDM1 — VDM1 TASK 1: AUTOMATING DATA INTEGRATION Paul Jaramillo

SELECT =
FROM detailed_report;

-— Any missing values?

SELECT =
FROM film_category
WHERE category_id IS NWULL;

SELECT =
FROM +inventory
WHERE film_id IS NULL;

n"‘-ll_'!" IIIIDJIII5 VO LT D

SELECT =
FROM film_category
WHERE category_id IS NULL;

SELECT =
FROM “nventory
WHERE film_id IS NULL;

SELECT =
FROM rental
WHERE inventory_id IS NULL;

-— Any duplicate walues?

SELECT film_id, category_id, COUNT (=)
FROM film_category

GROUP BY film_id, category_id

HAVING COUNT(*) > 1;

SELECT +inventory_id, film_id, COUNT (=)
FROM “nventory

GROUP BY inventory_id, film_did

HAVING COUNT (=) = 1;

VDM1 — VDM1 TASK 1: AUTOMATING DATA INTEGRATION Paul Jaramillo

SELECT rental_id, inventory_id, count(=)
FROM rental

GROUP BY rental_id, finventory_id

HAVING COUNT(*) > 1;

SELECT Hdnventory_id, rental_date, return_date, COUNT (=)
FROM rental

GROUP BY inventory_id, rental_date, return_date
HAVING COUNT(*) > 1;

—-—section D starts here

D.
-—-section D starts here

CREATE FUNCTION update_detailed_report()

RETURNS Table (category_id INT, category_name VARCHAR (25}, amount_film INT
language plpgsgl
as

55
BEGIN

Update detailed_report as d

Set category_name= CONCAT {d.category_name, ' Films');
END;

59
SELECT update_detailed_report (J;

SELECT = FROM detailed_report;
-— section & starts here

CREATE FUNCTION update_summary_function()
RETURNS trigger

LANGUAGE plpgsqgl

AS

55

BEGIN

E.

VDM1 — VDM1 TASK 1: AUTOMATING DATA INTEGRATION Paul Jaramillo

-- section e starts here

CREATE FUNCTION update_summary_function()
RETURNS trigger
LANGUAGE plpgsqgl

AS
$5
BEGIN
TRUNCATE summary_table;
INSERT INTO summary_table(
category_id, category_name, amount_rented)
SELECT category_id, category_name, amount_rented
Thwur LT oLalsgul y_iu
ORDER BY amount_rented DESC;
RETURN NEW;
End;5s

CREATE TRIGGER update_summary_trigger
AFTER INSERT

ON detailed_report

FOR EACH STATEMENT

EXECUTE FUNCTION update_summary_function();

INSERT INTO category {category_id, name)
VALUES (17, 'Test');

CREATE TRIGGER update_summary_trigger
AFTER INSERT

ON detailed_report

FOR EACH STATEMENT

EXECUTE FUNCTION update_summary_function();

INSERT INTO category (category_id, name)
VALUES (17, 'Test');

INSERT INTO detailed_report (category_id, category_name, amount_film, amoun
VALUES (17, 'Test', 1, 1);

VDM1 — VDM1 TASK 1: AUTOMATING DATA INTEGRATION Paul Jaramillo

INSERT INTO category (category_id, name)
VALUES (17, 'Test');

INSERT INTO detailed_report (category_id, category_name, amount_film, amour
VALUES (17, 'Test', 1, 1);

SELECT =
FROM summary_table;

-- section F starts here

——stbred procedure should be executed monthly
F.

-— section F starts here

--stored procedure should be executed monthly

CREATE PROCEDURE update_detailed_summary ()

LANGUAGE plpgsqgl

AS 55

BEGIN
TRUNCATE detailed_report;
TRUNCATE summary_table;
INSERT INTO detailed_report (category_id, category_name, amount_film, a
SELECT f.category_id as category_id, c.name AS category_name, COUNT{DIS
FROM film_category AS T

VDM1 — VDM1 TASK 1: AUTOMATING DATA INTEGRATION Paul Jaramillo

o T T o T I
ON i.film_id = f.film_id

INMNER JOIN rental AS r

ON r.inventory_id = i.inventory_id
GROUP BY f.category_id,c.name;

INSERT INTO summary_table(

category_id, category_name, amount_rented)
SELECT category_id, category_name, amount_rented
FROM detailed_report

GROUP BY category_id

ORDER BY amount_rented DESC;

WML w I:lIIIULrIIL_I L=l) L e) e wd b gy
END;$$

CREATE FUNCTION update_detailed_summary_function()
RETURNS TRIGGER

LANGUAGE plpg=sqgl

AS 5%

BEGIN

CALL update_detailed_summary () ;

RETURN NEW;

END; $§

The stored procedure can be run on a monthly schedule by using a job scheduling tool such as Linux
crontab, Agent pgAgent, or extension pg_cron which are available for PostgreSQL. In order to use these
tools, they have to be installed first on the server. If we are using pgAgent or pg_cron we then need to
create an extension for that tool. We are able to manage the pgAgent tool using the pgAdmin interface,
and we are able to manage the pg_cron tool using SQL.

